Zygmund theorem for harmonic quasiregular mappings
Abstract
Let $K\ge 1$. We prove Zygmund theorem for $K-$quasiregular harmonic mappings in the unit disk $\mathbb{D}$ in the complex plane by providing a constant $C(K)$ in the inequality $$\|f\|_{1}\le C(K)(1+\|\mathrm{Re}\,(f)\log^+ |\mathrm{Re}\, f|\|_1).$$ Moreover for a quasiregular harmonic mapping $f=(f_1,\dots, f_n)$ defined in the unit ball $\mathbb{B}\subset \mathbb{R}^n$, we prove the asymptotically sharp inequality $$\|f\|_{1}-|f(0)|\le (n-1)K^2(\|f_1\log f_1\|_1- f_1(0)\log f_1(0)),$$ when $K\to 1$, provided that $f_1$ is positive.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01814
- Bibcode:
- 2025arXiv250101814K
- Keywords:
-
- Mathematics - Complex Variables
- E-Print:
- 8 pages