Analyzing Aviation Safety Narratives with LDA, NMF and PLSA: A Case Study Using Socrata Datasets
Abstract
This study explores the application of topic modelling techniques Latent Dirichlet Allocation (LDA), Nonnegative Matrix Factorization (NMF), and Probabilistic Latent Semantic Analysis (PLSA) on the Socrata dataset spanning from 1908 to 2009. Categorized by operator type (military, commercial, and private), the analysis identified key themes such as pilot error, mechanical failure, weather conditions, and training deficiencies. The study highlights the unique strengths of each method: LDA ability to uncover overlapping themes, NMF production of distinct and interpretable topics, and PLSA nuanced probabilistic insights despite interpretative complexity. Statistical analysis revealed that PLSA achieved a coherence score of 0.32 and a perplexity value of -4.6, NMF scored 0.34 and 37.1, while LDA achieved the highest coherence of 0.36 but recorded the highest perplexity at 38.2. These findings demonstrate the value of topic modelling in extracting actionable insights from unstructured aviation safety narratives, aiding in the identification of risk factors and areas for improvement across sectors. Future directions include integrating additional contextual variables, leveraging neural topic models, and enhancing aviation safety protocols. This research provides a foundation for advanced text-mining applications in aviation safety management.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01690
- Bibcode:
- 2025arXiv250101690N
- Keywords:
-
- Computer Science - Machine Learning