Endpoint estimates for maximal operators associated to the wave equation
Abstract
We consider the $H^{s}$--$L^q$ maximal estimates associated to the wave operator \begin{equation*} e^{ it\sqrt{-\Delta}}f(x) = \frac{1}{(2\pi)^d}\int_{\mathbb{R}^d} e^{i(x \cdot \xi \, + t|\xi|)} \widehat{f}(\xi\,) d\xi. \end{equation*} Rogers--Villarroya proved $H^{s}$--$L^q$ estimates for the maximal operator $f\mapsto$ $\sup_{t} |e^{ it\sqrt{-\Delta}}f|$ up to the critical Sobolev exponents $s_c(q,d)$. However, the endpoint case estimates for the critical exponent $s=s_c(q,d)$ have remained open so far. We obtain the endpoint $H^{s_c(q,d)}$--$L^q$ bounded on the maximal operator $f\mapsto \sup_{t} |e^{ it\sqrt{-\Delta}}f|$. We also prove that several different forms of the maximal estimates considered by Rogers--Villarroya are basically equivalent to each other.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01686
- Bibcode:
- 2025arXiv250101686C
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Primary 35L05;
- Secondary 42B37