Marketing Mix Modeling in Lemonade
Abstract
Marketing mix modeling (MMM) is a widely used method to assess the effectiveness of marketing campaigns and optimize marketing strategies. Bayesian MMM is an advanced approach that allows for the incorporation of prior information, uncertainty quantification, and probabilistic predictions (1). In this paper, we describe the process of building a Bayesian MMM model for the online insurance company Lemonade. We first collected data on Lemonade's marketing activities, such as online advertising, social media, and brand marketing, as well as performance data. We then used a Bayesian framework to estimate the contribution of each marketing channel on total performance, while accounting for various factors such as seasonality, market trends, and macroeconomic indicators. To validate the model, we compared its predictions with the actual performance data from A/B-testing and sliding window holdout data (2). The results showed that the predicted contribution of each marketing channel is aligned with A/B test performance and is actionable. Furthermore, we conducted several scenario analyses using convex optimization to test the sensitivity of the model to different assumptions and to evaluate the impact of changes in the marketing mix on sales. The insights gained from the model allowed Lemonade to adjust their marketing strategy and allocate their budget more effectively. Our case study demonstrates the benefits of using Bayesian MMM for marketing attribution and optimization in a data-driven company like Lemonade. The approach is flexible, interpretable, and can provide valuable insights for decision-making.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01276
- Bibcode:
- 2025arXiv250101276R
- Keywords:
-
- Statistics - Applications;
- Computer Science - Machine Learning