Communication-and-Computation Efficient Split Federated Learning: Gradient Aggregation and Resource Management
Abstract
With the prevalence of Large Learning Models (LLM), Split Federated Learning (SFL), which divides a learning model into server-side and client-side models, has emerged as an appealing technology to deal with the heavy computational burden for network edge clients. However, existing SFL frameworks would frequently upload smashed data and download gradients between the server and each client, leading to severe communication overheads. To address this issue, this work proposes a novel communication-and-computation efficient SFL framework, which allows dynamic model splitting (server- and client-side model cutting point selection) and broadcasting of aggregated smashed data gradients. We theoretically analyze the impact of the cutting point selection on the convergence rate of the proposed framework, revealing that model splitting with a smaller client-side model size leads to a better convergence performance and vise versa. Based on the above insights, we formulate an optimization problem to minimize the model convergence rate and latency under the consideration of data privacy via a joint Cutting point selection, Communication and Computation resource allocation (CCC) strategy. To deal with the proposed mixed integer nonlinear programming optimization problem, we develop an algorithm by integrating the Double Deep Q-learning Network (DDQN) with convex optimization methods. Extensive experiments validate our theoretical analyses across various datasets, and the numerical results demonstrate the effectiveness and superiority of the proposed communication-efficient SFL compared with existing schemes, including parallel split learning and traditional SFL mechanisms.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01078
- Bibcode:
- 2025arXiv250101078L
- Keywords:
-
- Computer Science - Distributed;
- Parallel;
- and Cluster Computing
- E-Print:
- 13 pages,8 figures