Spatial Correlation Unifies Nonequilibrium Response Theory for Arbitrary Markov Jump Processes
Abstract
Understanding how systems respond to external perturbations is a fundamental challenge in physics, particularly for non-equilibrium and non-stationary processes. The fluctuation-dissipation theorem provides a complete framework for near-equilibrium systems, and various bounds are recently reported for specific non-equilibrium regimes. Here, we present an exact response equality for arbitrary Markov processes that decompose system response into spatial correlations of local dynamical events. This decomposition reveals that response properties are encoded in correlations between transitions and dwelling times across the network, providing a natural generalization of the fluctuation-dissipation theorem to generic non-equilibrium processes. Our theory unifies existing response bounds, extends them to time-dependent processes, and reveals fundamental monotonicity properties of the tightness of multi-parameter response inequalities. Beyond its theoretical significance, this framework enables efficient numerical evaluation of response properties from unperturbed trajectory data, offering practical advantages for studying complex networks and biological systems far from equilibrium.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.01050
- Bibcode:
- 2025arXiv250101050Z
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Physics - Biological Physics