Hardness of Learning Fixed Parities with Neural Networks
Abstract
Learning parity functions is a canonical problem in learning theory, which although computationally tractable, is not amenable to standard learning algorithms such as gradient-based methods. This hardness is usually explained via statistical query lower bounds [Kearns, 1998]. However, these bounds only imply that for any given algorithm, there is some worst-case parity function that will be hard to learn. Thus, they do not explain why fixed parities - say, the full parity function over all coordinates - are difficult to learn in practice, at least with standard predictors and gradient-based methods [Abbe and Boix-Adsera, 2022]. In this paper, we address this open problem, by showing that for any fixed parity of some minimal size, using it as a target function to train one-hidden-layer ReLU networks with perturbed gradient descent will fail to produce anything meaningful. To establish this, we prove a new result about the decay of the Fourier coefficients of linear threshold (or weighted majority) functions, which may be of independent interest.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.00817
- Bibcode:
- 2025arXiv250100817S
- Keywords:
-
- Computer Science - Machine Learning;
- Statistics - Machine Learning