The Gaudin model for the general linear Lie superalgebra and the completeness of the Bethe ansatz
Abstract
Let $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})$ be the Gaudin algebra of the general linear Lie superalgebra $\mathfrak{gl}_{m|n}$ with respect to a sequence $\underline{\boldsymbol{z}} \in \mathbb{C}^\ell$ of pairwise distinct complex numbers, and let $M$ be any $\ell$-fold tensor product of irreducible polynomial modules over $\mathfrak{gl}_{m|n}$. We show that the singular space $M^{\rm sing}$ of $M$ is a cyclic $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})$-module and the Gaudin algebra $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$ of $M^{\rm sing}$ is a Frobenius algebra. We also show that $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$ is diagonalizable with a simple spectrum for a generic $\underline{\boldsymbol{z}}$ and give a description of an eigenbasis and its corresponding eigenvalues in terms of the Fuchsian differential operators with polynomial kernels. This may be interpreted as the completeness of a reformulation of the Bethe ansatz for $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2501.00401
- Bibcode:
- 2025arXiv250100401K
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematical Physics