A Large-Scale Study on Video Action Dataset Condensation
Abstract
Dataset condensation has made significant progress in the image domain. Unlike images, videos possess an additional temporal dimension, which harbors considerable redundant information, making condensation even more crucial. However, video dataset condensation still remains an underexplored area. We aim to bridge this gap by providing a large-scale empirical study with systematic design and fair comparison. Specifically, our work delves into three key aspects to provide valuable empirical insights: (1) temporal processing of video data, (2) establishing a comprehensive evaluation protocol for video dataset condensation, and (3) adaptation of condensation methods to the space-time domain and fair comparisons among them. From this study, we derive several intriguing observations: (i) sample diversity appears to be more crucial than temporal diversity for video dataset condensation, (ii) simple slide-window sampling proves to be effective, and (iii) sample selection currently outperforms dataset distillation in most cases. Furthermore, we conduct experiments on three prominent action recognition datasets (HMDB51, UCF101 and Kinetics-400) and achieve state-of-the-art results on all of them. Our code is available at https://github.com/MCG-NJU/Video-DC.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.21197
- Bibcode:
- 2024arXiv241221197C
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition