Holographic observers for time-band algebras
Abstract
We study the algebra of observables in a time band on the boundary of anti-de Sitter space in a theory of quantum gravity. Strictly speaking this algebra does not have a commutant because products of operators within the time band give rise to operators outside the time band. However, we show that in a state where the bulk contains a macroscopic observer, it is possible to define a coarse-grained version of this algebra with a non-trivial commutant, and a resolution limited by the observer's characteristics. This algebra acts on a little Hilbert space that describes excitations about the observer's state and time-translated versions of this state. Our construction requires a choice of dressing that determines how elements of the algebra transform under the Hamiltonian. At leading order in gravitational perturbation theory, and with a specific choice of dressing, our construction reduces to the modular crossed-product described previously in the literature. We also prove a theorem showing that this is the only crossed product of a type III$_1$ algebra resulting in an algebra with a trace. This trace can be used to define entropy differences between states in the little Hilbert space that are insensitive to the properties of the observer. We discuss some technical challenges in extending this construction to higher orders in perturbation theory. Lastly, we review the construction of interior operators in the eternal black hole and show that they can be written as elements of a crossed product algebra.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.21185
- Bibcode:
- 2024arXiv241221185J
- Keywords:
-
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology
- E-Print:
- 52 pages