Topological dark energy from black-hole formations and mergers through the gravity-thermodynamics approach
Abstract
We apply the gravity-thermodynamics approach in the case of Einstein-Gauss-Bonnet theory, and its corresponding Wald-Gauss-Bonnet entropy, which due to the Chern-Gauss-Bonnet theorem it is related to the Euler characteristic of the Universe topology. However, we consider the realistic scenario where we have the formation and merger of black holes that lead to topology changes, which induce entropy changes in the Universe horizon. We extract the modified Friedmann equations and we obtain an effective dark energy sector of topological origin. We estimate the black-hole formation and merger rates starting from the observed star formation rate per redshift, which is parametrized very efficiently by the Madau-Dickinson form, and finally we result to a dark-energy energy density that depends on the cosmic star formation rate density, on the fraction $f_{\text{BH}}$ of stars forming black holes, on the fraction of black holes $f_\text{merge}$ that eventually merge, on the fraction $ f_{\text{bin}}$ of massive stars that are in binaries, on the average mass of progenitor stars that will evolve to form black holes $ \langle m_{\text{prog}} \rangle $, as well as on the Gauss-Bonnet coupling constant. We investigate in detail the cosmological evolution, obtaining the usual thermal history. Concerning the dark-energy equation-of-state parameter, we show that at intermediate redshifts it exhibits phantom-like or quintessence-like behavior according to the sign of the Gauss-Bonnet coupling, while at early and late times it tends to the cosmological constant value. Finally, we study the effect of the other model parameters, showing that for the whole allowed observationally estimated ranges, the topological dark-energy equation-of-state parameter remains within its observational bounds.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.21146
- Bibcode:
- 2024arXiv241221146T
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Theory
- E-Print:
- 13 pages, 11 figures, 1 Table