1/5 and 1/3 magnetization plateaux in the spin 1/2 chain system YbAlO3
Abstract
Quasi-one-dimensional magnets can host an ordered longitudinal spin-density wave state (LSDW) in magnetic field at low temperature, when longitudinal correlations are strengthened by Ising anisotropies. In the S = 1/2 Heisenberg antiferromagnet YbAlO3 this happens via Ising-like interchain interactions. Here, we report the first experimental observation of magnetization plateaux at 1/5 and 1/3 of the saturation value via thermal transport and magnetostriction measurements in YbAlO3. We present a phenomenological theory of the plateau states that describes them as islands of commensurability within an otherwise incommensurate LSDW phase and explains their relative positions within the LSDW phase and their relative extent in a magnetic field. Notably, the plateaux are stabilised by ferromagnetic interchain interactions in YbAlO3 and consistently are absent in other quasi-1D magnets such as BaCo2V2O8 with antiferromagnetic interchain interactions. We also report a sharp, step-like increase of the magnetostriction coefficient, indicating a phase transition of unknown origin in the high-field phase just below the saturation.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.21144
- Bibcode:
- 2024arXiv241221144M
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons