Galaxy Spectra Networks (GaSNet). III. Generative pre-trained network for spectrum reconstruction, redshift estimate and anomaly detection
Abstract
Classification of spectra (1) and anomaly detection (2) are fundamental steps to guarantee the highest accuracy in redshift measurements (3) in modern all-sky spectroscopic surveys. We introduce a new Galaxy Spectra Neural Network (GaSNet-III) model that takes advantage of generative neural networks to perform these three tasks at once with very high efficiency. We use two different generative networks, an autoencoder-like network and U-Net, to reconstruct the rest-frame spectrum (after redshifting). The autoencoder-like network operates similarly to the classical PCA, learning templates (eigenspectra) from the training set and returning modeling parameters. The U-Net, in contrast, functions as an end-to-end model and shows an advantage in noise reduction. By reconstructing spectra, we can achieve classification, redshift estimation, and anomaly detection in the same framework. Each rest-frame reconstructed spectrum is extended to the UV and a small part of the infrared (covering the blueshift of stars). Owing to the high computational efficiency of deep learning, we scan the chi-squared value for the entire type and redshift space and find the best-fitting point. Our results show that generative networks can achieve accuracy comparable to the classical PCA methods in spectral modeling with higher efficiency, especially achieving an average of $>98\%$ classification across all classes ($>99.9\%$ for star), and $>99\%$ (stars), $>98\%$ (galaxies) and $>93\%$ (quasars) redshift accuracy under cosmology research requirements. By comparing different peaks of chi-squared curves, we define the ``robustness'' in the scanned space, offering a method to identify potential ``anomalous'' spectra. Our approach provides an accurate and high-efficiency spectrum modeling tool for handling the vast data volumes from future spectroscopic sky surveys.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.21130
- Bibcode:
- 2024arXiv241221130Z
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 17 pages and 16 figures. Submitted to MNRAS