Baryon number violating hydrogen decay
Abstract
Most studies on baryon number violating (BNV) processes in the literature focus on free or bound nucleons in nuclei, with limited attention given to the decay of bound atoms. Given that hydrogen is the most abundant atom in the universe, it is particularly intriguing to investigate the decay of hydrogen atom as a means to probe BNV interactions. In this study, for the first time, we employ a robust effective field theory (EFT) approach to estimate the decay widths of two-body decays of hydrogen atom into standard model particles, by utilizing the constraints on the EFT cutoff scale derived from conventional nucleon decay processes. We integrate low energy effective field theory (LEFT), chiral perturbation theory (ChPT), and standard model effective field theory (SMEFT) to formulate the decay widths in terms of the LEFT and SMEFT Wilson coefficients (WCs), respectively. By applying the bounds on the WCs from conventional nucleon decays, we provide a conservative estimate on hydrogen BNV decays. Our findings indicate that the bounds on the inverse partial widths of all dominant two-body decays exceed $10^{44}$ years. Among these modes, the decay into two photons, ${\rm H}\to \gamma\gamma$, is particularly interesting, as it is the least constrained. This mode could be searched for in hydrogen-rich stellar environments by its distinct signature of 469.4 MeV gamma photons.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20774
- Bibcode:
- 2024arXiv241220774F
- Keywords:
-
- High Energy Physics - Phenomenology
- E-Print:
- 12 pages, 3 tables