M$^3$oralBench: A MultiModal Moral Benchmark for LVLMs
Abstract
Recently, large foundation models, including large language models (LLMs) and large vision-language models (LVLMs), have become essential tools in critical fields such as law, finance, and healthcare. As these models increasingly integrate into our daily life, it is necessary to conduct moral evaluation to ensure that their outputs align with human values and remain within moral boundaries. Previous works primarily focus on LLMs, proposing moral datasets and benchmarks limited to text modality. However, given the rapid development of LVLMs, there is still a lack of multimodal moral evaluation methods. To bridge this gap, we introduce M$^3$oralBench, the first MultiModal Moral Benchmark for LVLMs. M$^3$oralBench expands the everyday moral scenarios in Moral Foundations Vignettes (MFVs) and employs the text-to-image diffusion model, SD3.0, to create corresponding scenario images. It conducts moral evaluation across six moral foundations of Moral Foundations Theory (MFT) and encompasses tasks in moral judgement, moral classification, and moral response, providing a comprehensive assessment of model performance in multimodal moral understanding and reasoning. Extensive experiments on 10 popular open-source and closed-source LVLMs demonstrate that M$^3$oralBench is a challenging benchmark, exposing notable moral limitations in current models. Our benchmark is publicly available.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20718
- Bibcode:
- 2024arXiv241220718Y
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence