SatFlow: Scalable Network Planning for LEO Mega-Constellations
Abstract
Low-earth-orbit (LEO) satellite communication networks have evolved into mega-constellations with hundreds to thousands of satellites inter-connecting with inter-satellite links (ISLs). Network planning, which plans for network resources and architecture to improve the network performance and save operational costs, is crucial for satellite network management. However, due to the large scale of mega-constellations, high dynamics of satellites, and complex distribution of real-world traffic, it is extremely challenging to conduct scalable network planning on mega-constellations with high performance. In this paper, we propose SatFlow, a distributed and hierarchical network planning framework to plan for the network topology, traffic allocation, and fine-grained ISL terminal power allocation for mega-constellations. To tackle the hardness of the original problem, we decompose the grand problem into two hierarchical sub-problems, tackled by two-tier modules. A multi-agent reinforcement learning approach is proposed for the upper-level module so that the overall laser energy consumption and ISL operational costs can be minimized; A distributed alternating step algorithm is proposed for the lower-level module so that the laser energy consumption could be minimized with low time complexity for a given topology. Extensive simulations on various mega-constellations validate SatFlow's scalability on the constellation size, reducing the flow violation ratio by up to 21.0% and reducing the total costs by up to 89.4%, compared with various state-of-the-art benchmarks.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20475
- Bibcode:
- 2024arXiv241220475C
- Keywords:
-
- Computer Science - Networking and Internet Architecture
- E-Print:
- Accepted by IEEE International Conference on Network Protocols (ICNP'24)