Cosmological stimulated emission
Abstract
We study the analogy between graviton emission in a thermal radiation environment and the laser mechanism, where photons of the same momentum and polarization are amplified. Using interaction picture perturbation theory, we analyze the time evolution of the graviton number operator and its expectation value in a squeezed vacuum state, describing the inflationary graviton state. During the radiation-dominated era of the early universe, we find secular growth in the graviton number, leading to the breakdown of perturbative analysis within approximately ten Hubble times after reheating. We also explore analogous effects in a Minkowski background. As a thought experiment, we consider LIGO/Virgo-like detectors immersed in a radiation environment at temperatures of $O(10)$ GeV. In this scenario, graviton numbers at $O(100)$ Hz could be enhanced, suggesting a mechanism to amplify gravitational wave signals. While this setup is beyond current experimental capabilities, it points to potential advancements in gravitational wave measurements.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20474
- Bibcode:
- 2024arXiv241220474O
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology;
- High Energy Physics - Theory
- E-Print:
- 6 pages