Spin-orbit interactions of the twisted random light
Abstract
The twist phase of random light represents a nontrivial two-point phase, endowing the field with orbital angular momentum. Although the mutual transition of the spin and orbit angular momenta of coherent light has been revealed, the relationship between spin-orbital angular momentum interaction (SOI) and the twist phase has remained unexplored. This is because of the stochastic nature of random light, making it challenging to explore the properties of angular momenta that rely on well-defined spatial and polarization structures. This study addresses this gap from the view of the asymmetry coherent-mode decomposition for twisted random light to gain insight into the intricate interplay between the twist phase and the SOI within a tight focusing system. Our findings reveal that spin and orbit angular momentum transitions occur in the tightly focused twisted random light beam, yielding the transverse spin density controlled by the twist phase. This effect becomes more pronounced when the spin of random light and the chirality of the twist phase are the same. Our work may find significant applications in optical sensing, metrology, and quantum optics.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20343
- Bibcode:
- 2024arXiv241220343L
- Keywords:
-
- Physics - Optics