On a class of left ideals of nest algebras
Abstract
We introduce a class of left ideals (and subalgebras) of nest algebras determined by totally ordered families of partial isometries on a complex Hilbert space $H$. Let $\mathcal{E}$ be a family of partial isometries that is totally ordered in the Halmos--McLaughlin ordering, and let $\mathcal{A}_{\mathcal{E}}$ be the subset of operators in $B(H)$ which, for all $E\in \mathcal{E}$, map the initial space of $E$ to the final space of $E$. We show that $\mathcal{A}_{\mathcal{E}}$ is a subalgebra of $B(H)$ if and only if $\mathcal{A}_{\mathcal{E}}$ is a left ideal of a certain nest algebra, and if so, $\mathcal{E}$ consists of power partial isometries, except possibly for its supremum $\vee \mathcal{E}$, in which case the range $\operatorname{ran}(\vee \mathcal{E})$ is $H$. It is also shown that any left ideal $\mathcal{A}_{\mathcal{E}}$ is decomposable and that the subset of finite rank operators in its closed unit ball is strongly dense in the ball. Necessary and sufficient conditions to solve $Tx=y$ and $T^*x=y$ in $\mathcal{A}_{\mathcal{E}}$ are given.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20159
- Bibcode:
- 2024arXiv241220159C
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis;
- 47L75;
- 47L35;
- 46K50;
- 47A15
- E-Print:
- 20 pages, 0 figures