Main conjectures for non-CM elliptic curves at good ordinary primes
Abstract
Let $E/\mathbb{Q}$ be an elliptic curve and $p > 2$ be a prime of good ordinary reduction for $E$. Assume that the residue representation associated with $(E, p)$ is irreducible. In this paper, we prove more cases on several Iwasawa main conjectures for $E$. As applications, we prove more general cases of $p$-converse theorem and $p$-part BSD formula when the rank is less than or equal to $1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.20078
- Bibcode:
- 2024arXiv241220078Y
- Keywords:
-
- Mathematics - Number Theory