Detecting and Diagnosing Faults in Autonomous Robot Swarms with an Artificial Antibody Population Model
Abstract
An active approach to fault tolerance is essential for long term autonomy in robots -- particularly multi-robot systems and swarms. Previous efforts have primarily focussed on spontaneously occurring electro-mechanical failures in the sensors and actuators of a minority sub-population of robots. While the systems that enable this function are valuable, they have not yet considered that many failures arise from gradual wear and tear with continued operation, and that this may be more challenging to detect than sudden step changes in performance. This paper presents the Artificial Antibody Population Dynamics (AAPD) model -- an immune-inspired model for the detection and diagnosis of gradual degradation in robot swarms. The AAPD model is demonstrated to reliably detect and diagnose gradual degradation, as well as spontaneous changes in performance, among swarms of robots of as few as 5 robots while remaining tolerant of normally behaving robots. The AAPD model is distributed, offers supervised and unsupervised configurations, and demonstrates promising scalable properties. Deploying the AAPD model on a swarm of foraging robots undergoing slow degradation enables the swarm to operate at an average of ~79\% of its performance in perfect conditions.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19942
- Bibcode:
- 2024arXiv241219942O
- Keywords:
-
- Computer Science - Robotics