The Degree of (Extended) Justified Representation and Its Optimization
Abstract
Justified Representation (JR)/Extended Justified Representation (EJR) is a desirable axiom in multiwinner approval voting. In contrast to (E)JR only requires at least \emph{one} voter to be represented in every cohesive group, we study its optimization version that maximizes the \emph{number} of represented voters in each group. Given an instance, we say a winning committee provides an (E)JR degree of $c$ if at least $c$ voters in each $\ell$-cohesive group have approved $\ell$ winning candidates. Hence, every (E)JR committee provides the (E)JR degree of at least $1$. Besides proposing this new property, we propose the optimization problem of finding a winning committee that achieves the maximum possible (E)JR degree, called MDJR and MDEJR, corresponding to JR and EJR respectively. We study the computational complexity and approximability of MDJR of MDEJR. An (E)JR committee, which can be found in polynomial time, straightforwardly gives a $(k/n)$-approximation. On the other hand, we show that it is NP-hard to approximate MDJR and MDEJR to within a factor of $\left(k/n\right)^{1-\epsilon}$, for any $\epsilon>0$, which complements the approximation. Next, we study the fixed-parameter-tractability of this problem. We show that both problems are W[2]-hard if $k$, the size of the winning committee, is specified as the parameter. However, when $c_{\text{max}}$, the maximum value of $c$ such that a committee that provides an (E)JR degree of $c$ exists, is additionally given as a parameter, we show that both MDJR and MDEJR are fixed-parameter-tractable.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19933
- Bibcode:
- 2024arXiv241219933T
- Keywords:
-
- Computer Science - Computer Science and Game Theory
- E-Print:
- Accepted by the 24th International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2025)