A remark on dimension and potential free estimates for Riesz transforms associated with Schrödinger operators
Abstract
Let $L=-\Delta + V(x)$ be a Schrödinger operator on $\mathbb R^d$, where $V(x)\geq 0$, $V\in L^2_{\rm loc} (\mathbb R^d)$. We give a short proof of dimension free $L^p(\mathbb R^d)$ estimates, $1<p\leq 2$, for the vector of the Riesz transforms $$\big(\frac{\partial}{\partial x_1}L^{-1/2}, \frac{\partial}{\partial x_2}L^{-1/2},\dots,\frac{\partial}{\partial x_d}L^{-1/2}\Big).$$ The constant in the estimates does not depend on the potential $V$. We simultaneously provide a short proof of the weak type $(1,1)$ estimates for $\frac{\partial}{\partial x_j}L^{-1/2}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19922
- Bibcode:
- 2024arXiv241219922D
- Keywords:
-
- Mathematics - Functional Analysis;
- 42B20