On the uplift of 4D wormholes in Braneworld models and their 5D structure
Abstract
Recent developments in the consistent embedding of general 4D static and spherically-symmetric spacetimes in arbitrary single-brane braneworld models [Phys.Rev.D 109 (2024) 4, L041501] initiated the program of studying the bulk structure of braneworld wormholes. In this article, adopting a completely generic approach, we derive the general conditions that the metric functions of any braneworld spacetime must satisfy to describe a wormhole structure in the bulk. Particular emphasis is placed on clarifying the proper uplift of 4D wormholes, expressed in terms of various radial coordinates on the brane, and we demonstrate the important role of the circumferential radius metric function for the embedding. Additionally, the flare-out conditions for braneworld wormholes are presented for the first time and are found to differ from the case of flat extra dimensions. To illustrate the method, we first perform the uplift into the Randall-Sundrum II braneworld model for three well-known 4D wormhole spacetimes; the effective braneworld wormhole solutions of Casadio-Fabbri-Mazzacurati and Bronnikov-Kim, and the Simpson-Visser spacetime. Subsequently, we study their bulk features by means of curvature invariants, flare-out conditions, energy conditions and embedding diagrams. Our analysis reveals that the assumption of a warped extra dimension has non-trivial implications for the structure of 5D wormholes.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19773
- Bibcode:
- 2024arXiv241219773P
- Keywords:
-
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory
- E-Print:
- 24 pages, 6 figures