Low-Regularity Global solution for fractional NLS in modulation spaces
Abstract
We establish global well-posedness for the mass sub-critical nonlinear fractional Schrödinger equation $$iu_t + (-\Delta)^\frac{\beta}{2} u \pm (|u|^{\alpha}u)=0$$ with radial initial data in modulation spaces $M^{p,\frac{p}{p-1}}(\mathbb R^n)$ with $2<p$ sufficiently close to $2.$ Our order of dispersion $\beta$ lies in $(2n/ (2n-1), 2)$ for $n \geq 2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19714
- Bibcode:
- 2024arXiv241219714B
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q55
- E-Print:
- 15 pages