Reflexive modules and Auslander-type conditions
Abstract
We study the category $\mathop{\mathrm{ref}}\Lambda$ of reflexive modules over a two-sided Noetherian ring $\Lambda$. We show that the category $\mathop{\mathrm{ref}}\Lambda$ is quasi-abelian if and only if $\Lambda$ satisfies certain Auslander-type condition on the minimal injective resolution of the ring itself. Furthermore, we establish a Morita theorem which characterizes the category of reflexive modules among quasi-abelian categories in terms of generator-cogenerators.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19625
- Bibcode:
- 2024arXiv241219625H
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Commutative Algebra;
- Mathematics - Category Theory;
- Mathematics - Rings and Algebras
- E-Print:
- 19 pages