Tailoring Robust Quantum Anomalous Hall Effect via Entropy-Engineering
Abstract
Development of quantum materials and tailoring of their functional properties is a fundamental interest in materials science. Here we propose a new design concept for robust quantum anomalous Hall effect via entropy engineering in 2D magnets. As a prototypical example, configurational entropy of monolayer transition metal trihalide VCl$_3$ is manipulated by incorporating four different transition-metal cations [Ti,Cr,Fe,Co] in the honeycomb structure made of vanadium, such that all the in-plane mirror symmetries, inversion and/or roto-inversion are broken. Monolayer VCl$_3$ is a ferromagnetic Dirac half-metal in which spin-polarized Dirac dispersion at valley momenta is accompanied by bulk states at the $\Gamma$-point and thus the spin-orbit interaction driven quantum anomalous Hall phase does not exhibit fully gapped bulk band dispersion. Entropy-driven bandstructure renormalization, especially band flattening in combination with red and blue shifts at different momenta of the Brillouin zone and crystal-field effects, transforms Dirac half-metal to a Dirac spin gapless semiconductor and leads to a robust quantum anomalous Hall phase with fully gapped bulk band dispersion, and thus, a purely topological edge state transport without mixing with dissipative bulk channels. These findings provide a paradigm to design entropy-driven 2D materials for the realization of robust quantum anomalous Hall effect and quantum device applications.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19499
- Bibcode:
- 2024arXiv241219499A
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics