Quasi-steady emission from repeating fast radio bursts can be explained by magnetar wind nebula
Abstract
Among over 1000 known fast radio bursts (FRBs), only three sources - FRB 121102 (R1), FRB 190520 (R2) and FRB 201124 (R3) - have been linked to persistent radio sources (PRS). The observed quasi-steady emission is consistent with synchrotron radiation from a composite of magnetar wind nebula (MWN) and supernova (SN) ejecta. We compute the synchrotron flux by solving kinetic equations for energized electrons, considering electromagnetic cascades of electron-positron pairs interacting with nebular photons. For rotation-powered model, a young neutron star (NS) with age $t_{\rm age}\approx 20\,{\rm yr}$, dipolar magnetic field $B_{\rm dip}\approx (3-5)\times10^{12}\,{\rm G}$ and spin period $P_i\approx 1.5-3\,{\rm ms}$ in an ultra-stripped SN progenitor can account for emissions from R1 and R2. In contrast, R3 requires $t_{\rm age}\approx 10\,{\rm yr}$, $B_{\rm dip}\approx 5.5\times10^{13}\,{\rm G}$ and $P_i\approx 10\,{\rm ms}$ in a conventional core-collapse SN progenitor. For magnetar-flare-powered model, NS aged $t_{\rm age} \approx 25\,/40\,{\rm yr}$ in a USSN progenitor and $t_{\rm age} \approx 12.5\,{\rm yr}$ in a CCSN progenitor explains the observed flux for R1/R2 and R3, respectively. Finally, we constrain the minimum NS age $t_{\rm age,min} \sim 1-3\,{\rm yr}$ from the near-source plasma contribution to observed DM, and $t_{\rm age,min} \sim 6.5-10\,{\rm yr}$ based on the absence of radio signal attenuation.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.19358
- Bibcode:
- 2024arXiv241219358B
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 14 pages, 8 figures, 2 tables