The distribution of powers of primes related to the Frobenius problem
Abstract
Let $1<c<d$ be two relatively prime integers, $g_{c,d}=cd-c-d$ and $\mathbb{P}$ is the set of primes. For any given integer $k \geq 1$, we prove that $$\#\left\{p^k\le g_{c,d}:p\in \mathbb{P}, ~p^k=cx+dy,~x,y\in \mathbb{Z}_{\geqslant0} \right\}\sim \frac{k}{k+1}\frac{g^{1/k}}{\log g} \quad (\text{as}~c\rightarrow\infty),$$ which gives an extension of a recent result of Ding, Zhai and Zhao.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.18898
- Bibcode:
- 2024arXiv241218898H
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 14 pages