Probing the Interaction Between Topological and Rashba-like Surface States in MnBi$_2$Te$_4$ Through Sn Doping
Abstract
The presence of Rashba-like surface states (RSS) in the electronic structure of topological insulators (TIs) has been a longstanding topic of interest due to their significant impact on electronic and spin structures. In this study, we investigate the interaction between topological and Rashba-like surface states (TSS and RSS) in Mn$_{1-x}$Sn$_x$Bi$_2$Te$_4$ systems using density functional theory (DFT) calculations and high-resolution ARPES. Our findings reveal that increasing Sn concentration shifts RSS downward in energy, enhancing their influence on the electronic structure near the Fermi level. ARPES validates these predictions, capturing the evolution of RSS and their hybridization with TSS. Orbital analysis shows RSS are localized within the first three Te-Bi-Te trilayers, dominated by Bi $p$-orbitals, with evidence of the orbital Rashba effect enhancing spin-momentum locking. At higher Sn concentrations, RSS penetrate deeper into the crystal, driven by Sn $p$-orbital contributions. These results position Mn$_{1-x}$Sn$_x$Bi$_2$Te$_4$ as a tunable platform for tailoring electronic properties in spintronic and quantum technologies.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.18666
- Bibcode:
- 2024arXiv241218666T
- Keywords:
-
- Condensed Matter - Materials Science