Ultralow-temperature heat transport evidence for residual density of states in the superconducting state of CsV3Sb5
Abstract
The V-based kagome superconductors $A$V$_3$Sb$_5$ ($A$ = K, Rb, and Cs) host charge density wave (CDW) and a topological nontrivial band structure, thereby provide a great platform to study the interplay of superconductivity (SC), CDW, frustration, and topology. Here, we report ultralow-temperature thermal conductivity measurements on CsV$_3$Sb$_5$ and Ta-doped Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$ and scanning tunneling microscopy (STM) measurements on CsV$_3$Sb$_5$. The finite residual linear term of thermal conductivity at zero magnetic field suggests the existence of a residual density of states (DOS) in the superconducting state of CsV$_3$Sb$_5$. This is supported by the observation of non-zero conductance at zero bias in STM spectrum at an electronic temperature of 90 mK. However, in Cs(V$_{0.86}$Ta$_{0.14}$)$_3$Sb$_5$, which does not have CDW order, there is no evidence for residual DOS. These results show the importance of CDW order for the residual DOS, and a nodal $s$-wave gap or residual Fermi arc may be the origin of the residual DOS in such an unusual multiband kagome superconductor, CsV$_3$Sb$_5$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.18446
- Bibcode:
- 2024arXiv241218446Z
- Keywords:
-
- Condensed Matter - Superconductivity;
- Condensed Matter - Materials Science;
- Condensed Matter - Strongly Correlated Electrons
- E-Print:
- A small part of the contents overlaps with arXiv:2102.08356