The John inclusion for log-concave functions
Abstract
John's inclusion states that a convex body in $\mathbb{R}^d$ can be covered by the $d$-dilation of its maximal volume ellipsoid. We obtain a certain John-type inclusion for log-concave functions. As a byproduct of our approach, we establish the following asymptotically tight inequality: \\ \noindent For any log-concave function $f$ with finite, positive integral, there exist a positive definite matrix $A$, a point $a \in \mathbb{R}^d$, and a positive constant $\alpha$ such that \[ \chi_{\mathbf{B}^{d}}(x) \leq \alpha f\!\!\left(A(x-a)\right) \leq \sqrt{d+1} \cdot e^{-\frac{\left|x\right|}{d+2} + (d+1)}, \] where $\chi_{\mathbf{B}^{d}}$ is the indicator function of the unit ball $\mathbf{B}^{d}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.18444
- Bibcode:
- 2024arXiv241218444I
- Keywords:
-
- Mathematics - Metric Geometry;
- 52A23 (primary);
- 52A40;
- 46T12