Small-scale mass estimates for Laplace eigenfunctions on compact $C^{2}$ manifolds with boundary
Abstract
Let $\Omega$ be an $n$-dimensional compact Riemannian manifold with $C^2$ boundary, and consider $L^2$-normalized eigenfunctions $ - \Delta \phi_{\lambda} = \lambda^2 \phi_\lambda$ with Dirichlet or Neumann boundary conditions . In this note, we extend well-known interior nonconcentration bounds up to the boundary. Specifically, in Theorem \ref{thm1} using purely stationary, local methods, we prove that for such $\Omega$, it follows that for {\em any} $x_0 \in \overline{\Omega}$ (including boundary points) and for all $\mu \geq h,$ \begin{equation} \label{nonconbdy} \| \phi_\lambda \|_{B(x_0,\mu)\cap \Omega}^2 = O(\mu). \end{equation} In Theorem \ref{thm2} we extend a result of Sogge \cite{So} to manifolds with smooth boundary and show that \begin{equation} \label{SUPBD} \| \phi_\lambda \|_{L^\infty(\Omega)} \leq C \lambda^{\frac{n}{2}} \cdot \sup_{x \in \Omega} \| \phi_{\lambda} \|_{L^2( B(x,\lambda^{-1}) \cap \Omega )}. \end{equation} The sharp sup bounds $\| \phi_{\lambda} \|_{L^\infty(\Omega)} = O(\lambda^{\frac{n-1}{2}})$ first proved by Grieser in \cite{Gr} are then an immediate consequence of Theorems \ref{thm1} and \ref{thm2}.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17935
- Bibcode:
- 2024arXiv241217935C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Spectral Theory;
- 35P05;
- 35G15;
- 58J32