On the Hopf superalgebra of symmetric functions in superspace
Abstract
We introduce a superspace analogue of combinatorial Hopf algebras (Aguiar-Bergeron-Sottile, 2006), and show that the Hopf superalgebra of quasi-symmetric (resp. symmetric) functions in superspace (Fishel-Lapointe-Pinto, 2019) is a terminal object in the category of all (resp. cocommutative) combinatorial Hopf superalgebras. We also introduce a superspace analogue of chromatic symmetric functions of graphs (Stanley, 1995) using the chromatic Hopf superalgebra of two-colored graphs.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17670
- Bibcode:
- 2024arXiv241217670H
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematical Physics;
- Mathematics - Quantum Algebra
- E-Print:
- 13 pages