Integrated differential analysis of multi-omics data using a joint mixture model: idiffomix
Abstract
Gene expression and DNA methylation are two interconnected biological processes and understanding their relationship is important in advancing understanding in diverse areas, including disease pathogenesis, environmental adaptation, developmental biology, and therapeutic responses. Differential analysis, including the identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites (DMCs) and differentially expressed genes (DEGs) between two conditions, such as healthy and affected samples, can aid understanding of biological processes and disease progression. Typically, gene expression and DNA methylation data are analysed independently to identify DMCs and DEGs which are further analysed to explore relationships between them. Such approaches ignore the inherent dependencies and biological structure within these related data. A joint mixture model is proposed that integrates information from the two data types at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of DMCs and DEGs. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm. Performance of the proposed method, idiffomix, is assessed through a thorough simulation study and application to a publicly available breast cancer dataset. Several genes, identified as non-differentially expressed when the data types were modelled independently, had high likelihood of being differentially expressed when associated methylation data were integrated into the analysis. The idiffomix approach highlights the advantage of an integrated analysis via a joint mixture model over independent analyses of the two data types; genome-wide and cross-omics information is simultaneously utilised providing a more comprehensive view.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17511
- Bibcode:
- 2024arXiv241217511M
- Keywords:
-
- Statistics - Methodology
- E-Print:
- 29 pages 6 figures