Neural Spatial-Temporal Tensor Representation for Infrared Small Target Detection
Abstract
Optimization-based approaches dominate infrared small target detection as they leverage infrared imagery's intrinsic low-rankness and sparsity. While effective for single-frame images, they struggle with dynamic changes in multi-frame scenarios as traditional spatial-temporal representations often fail to adapt. To address these challenges, we introduce a Neural-represented Spatial-Temporal Tensor (NeurSTT) model. This framework employs nonlinear networks to enhance spatial-temporal feature correlations in background approximation, thereby supporting target detection in an unsupervised manner. Specifically, we employ neural layers to approximate sequential backgrounds within a low-rank informed deep scheme. A neural three-dimensional total variation is developed to refine background smoothness while reducing static target-like clusters in sequences. Traditional sparsity constraints are incorporated into the loss functions to preserve potential targets. By replacing complex solvers with a deep updating strategy, NeurSTT simplifies the optimization process in a domain-awareness way. Visual and numerical results across various datasets demonstrate that our method outperforms detection challenges. Notably, it has 16.6$\times$ fewer parameters and averaged 19.19\% higher in $IoU$ compared to the suboptimal method on $256 \times 256$ sequences.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- arXiv:
- arXiv:2412.17302
- Bibcode:
- 2024arXiv241217302W
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition