LLM-based relevance assessment still can't replace human relevance assessment
Abstract
The use of large language models (LLMs) for relevance assessment in information retrieval has gained significant attention, with recent studies suggesting that LLM-based judgments provide comparable evaluations to human judgments. Notably, based on TREC 2024 data, Upadhyay et al. make a bold claim that LLM-based relevance assessments, such as those generated by the UMBRELA system, can fully replace traditional human relevance assessments in TREC-style evaluations. This paper critically examines this claim, highlighting practical and theoretical limitations that undermine the validity of this conclusion. First, we question whether the evidence provided by Upadhyay et al. really supports their claim, particularly if a test collection is used asa benchmark for future improvements. Second, through a submission deliberately intended to do so, we demonstrate the ease with which automatic evaluation metrics can be subverted, showing that systems designed to exploit these evaluations can achieve artificially high scores. Theoretical challenges -- such as the inherent narcissism of LLMs, the risk of overfitting to LLM-based metrics, and the potential degradation of future LLM performance -- must be addressed before LLM-based relevance assessments can be considered a viable replacement for human judgments.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17156
- Bibcode:
- 2024arXiv241217156C
- Keywords:
-
- Computer Science - Information Retrieval