Bounds for higher Steklov and mixed Steklov Neumann eigenvalues on domains with holes
Abstract
In this article, we study Steklov eigenvalues and mixed Steklov Neumann eigenvalues on a smooth bounded domain in $\mathbb{R}^{n}$, $n \geq 2$, having a spherical hole. We focus on two main results related to Steklov eigenvalues. First, we obtain explicit expression for the second nonzero Steklov eigenvalue on concentric annular domain. Secondly, we derive a sharp upper bound of the first $n$ nonzero Steklov eigenvalues on a domain $\Omega \subset \mathbb{R}^{n}$ having symmetry of order $4$ and a ball removed from its center. This bound is given in terms of the corresponding Steklov eigenvalues on a concentric annular domain of the same volume as $\Omega$. Next, we consider the mixed Steklov Neumann eigenvalue problem on $4^{\text{th}}$ order symmetric domains in $\mathbb{R}^{n}$ having a spherical hole and obtain upper bound of the first $n$ nonzero eigenvalues. We also provide some examples to illustrate that symmetry assumption in our results is crucial. Finally, We make some numerical observations about these eigenvalues using FreeFEM++ and state them as conjectures.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17124
- Bibcode:
- 2024arXiv241217124B
- Keywords:
-
- Mathematics - Spectral Theory;
- 58J50;
- 35P15