The smallest singular value of large random rectangular Toeplitz and circulant matrices
Abstract
Let $x_i$, $i\in\mathbb{Z}$ be a sequence of i.i.d. standard normal random variables. Consider rectangular Toeplitz $\mathbf{X}=\left(x_{j-i}\right)_{1\leq i\leq p,1\leq j\leq n}$ and circulant $\mathbf{X}=\left(x_{(j-i)\mod n}\right)_{1\leq i\leq p,1\leq j\leq n}$ matrices. Let $p,n\rightarrow\infty$ so that $p/n\rightarrow c\in(0,1]$. We prove that the smallest eigenvalue of $\frac{1}{n}\mathbf{X}\mathbf{X}^\top$ converges to zero in probability and in expectation. We establish a lower bound on the rate of this convergence. The lower bound is faster than any poly-log but slower than any polynomial rate. For the ``rectangular circulant'' matrices, we also establish a polynomial upper bound on the convergence rate, which is a simple explicit function of $c$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.17091
- Bibcode:
- 2024arXiv241217091O
- Keywords:
-
- Mathematics - Probability;
- 60B20
- E-Print:
- 29 pages including Appendix, 4 figures