Dark photons and tachyonic instability induced by Barbero-Immirzi parameter and axion-torsion transmutation
Abstract
In this paper, we investigate Holst gravity by examining two distinct examples. The first example involves minimal coupling to torsion, while the second explores non-minimal coupling. The motivation for the first example stems from the recent work by Dombriz, which utilized a technique of imposing constraint constant coefficients to massive torsion in the model Lagrangian to determine parameters for the Einstein-Cartan-Holst gravity. We extend this methodology to investigate dark photons, where axial torsion transforms into axions.Interest in elucidating the abundance of dark photons within the framework of general relativity was sparked by Agrawal. Building on the work of Barman, who explored minimal coupling of massive torsion mediated by dark matter (DM) with light torsion on the order of 1.7 TeV, we have derived a Barbero-Immirzi (BI) parameter of approximately 0.775. This value falls within the range established by Panza et al. at TeV scales, specifically $0\le{\beta}\le{1.185}$. This seems to our knowledge the first time BI parameter is induced by dark photons on a minimal EC gravity. Very recently, implications of findings of BI parameter in cosmological bounces has appeared in the literature. For a smaller BI parameter a higher torsion mass of 1.51 TeV is obtained. Nevertheless. this figure is still a signature of light torsion which can be compatible with light dark photon masses. Magnetic helicity instability of dark photons is investigated. Axion oscillation frequency is shown to depend on the BI parameter and the BI spectra is determined by an histogram. This study not only broadens the understanding of Holst gravity but also provides crucial insights into the interplay between torsion, dark photons, and axions in the cosmological context.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.16617
- Bibcode:
- 2024arXiv241216617G
- Keywords:
-
- High Energy Physics - Phenomenology;
- General Relativity and Quantum Cosmology
- E-Print:
- 16 pages, 1 figures