Rethinking Model Redundancy for Low-light Image Enhancement
Abstract
Low-light image enhancement (LLIE) is a fundamental task in computational photography, aiming to improve illumination, reduce noise, and enhance the image quality of low-light images. While recent advancements primarily focus on customizing complex neural network models, we have observed significant redundancy in these models, limiting further performance improvement. In this paper, we investigate and rethink the model redundancy for LLIE, identifying parameter harmfulness and parameter uselessness. Inspired by the rethinking, we propose two innovative techniques to mitigate model redundancy while improving the LLIE performance: Attention Dynamic Reallocation (ADR) and Parameter Orthogonal Generation (POG). ADR dynamically reallocates appropriate attention based on original attention, thereby mitigating parameter harmfulness. POG learns orthogonal basis embeddings of parameters and prevents degradation to static parameters, thereby mitigating parameter uselessness. Experiments validate the effectiveness of our techniques. We will release the code to the public.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- arXiv:
- arXiv:2412.16459
- Bibcode:
- 2024arXiv241216459L
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition