Measuring the Transverse Velocity of Strongly Lensed Gravitational Wave Sources with Ground Based Detectors
Abstract
Observations of strongly gravitationally lensed gravitational wave (GW) sources provide a unique opportunity for constraining their transverse motion, which otherwise is exceedingly hard for GW mergers in general. Strong lensing makes this possible when two or more images of the lensed GW source are observed, as each image essentially allows the observer to see the GW source from different directional lines-of-sight. If the GW source is moving relative to the lens and observer, the observed GW signal from one image will therefore generally appear blue- or redshifted compared to GW signal from the other image. This velocity induced differential Doppler shift gives rise to an observable GW phase shift between the GW signals from the different images, which provides a rare glimpse into the relative motion of GW sources and their host environment across redshift. We illustrate that detecting such GW phase shifts is within reach of next-generation ground-based detectors such as Einstein Telescope, that is expected to detect $\sim$hundreds of lensed GW mergers per year. This opens up completely new ways of inferring the environment of GW sources, as well as studying cosmological velocity flows across redshift.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.14159
- Bibcode:
- 2024arXiv241214159S
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- comments welcome