Hunting pre-stellar cores with APEX: IRAS16293E (Oph464)
Abstract
Pre-stellar cores are the first steps in the process of star and planet formation. However, the dynamical and chemical evolution of pre-stellar cores is still not well understood. We aim at estimating the central density of the pre-stellar core IRAS16293E and at carrying out an inventory of molecular species towards the density peak of the core. We observed high-$J$ rotational transitions of N$_2$H$^+$ and N$_2$D$^+$, and several other molecular lines towards the dust emission peak using the Atacama Pathfinder EXperiment (APEX) telescope, and derived the density and temperature profiles of the core using far-infrared surface brightness maps from $Herschel$. The N$_2$H$^+$ and N$_2$D$^+$ lines were analysed by non-LTE radiative transfer modelling. Our best-fit core model consists in a static inner region, embedded in an infalling envelope with an inner radius of approximately 3000 au (21" at 141 pc). The observed high-J lines of N$_2$H$^+$ and N$_2$D$^+$ (with critical densities greater than 10$^6$ cm$^{-3}$) turn out to be very sensitive to depletion; the present single-dish observations are best explained with no depletion of N$_2$H$^+$ and N$_2$D$^+$ in the inner core. The N$_2$D$^+$/N$_2$H$^+$ ratio that best reproduces our observations is 0.44, one of the largest observed to date in pre-stellar cores. Additionally, half of the molecules that we observed are deuterated isotopologues, confirming the high-level of deuteration towards this source. Non-LTE radiative transfer modelling of N$_2$H$^+$ and N$_2$D$^+$ lines proved to be an excellent diagnostic of the chemical structure and dynamics of a pre-stellar core. Probing the physical conditions immediately before the protostellar collapse is a necessary reference for theoretical studies and simulations with the aim of understanding the earliest stages of star and planet formation and the time scale of this process.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.13760
- Bibcode:
- 2024arXiv241213760S
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in A&