Multiferroic Dark Excitonic Mott Insulator in the Breathing-Kagome Lattice Material Nb$_3$Cl$_8$
Abstract
Motivated by the recent discovery of flat bands (FBs) in breathing Kagome lattices (BKLs), we present a detailed first-principles study of the optical response of single-layer (SL) Nb$_3$Cl$_8$ using the GW-Bethe-Salpeter equation (GW-BSE) method, incorporating self-energy corrections and excitonic effects. Our findings reveal a rich spectrum of strongly bound excitons. The key results are fourfold: (i) SL Nb$_3$Cl$_8$ exhibits a dark spin-triplet Frenkel exciton ground state with binding energy substantially larger than the GW-renormalized band gap, giving rise to a negative exciton energy peak at $-0.14$ eV and indicating an excitonic Mott insulator phase potentially stable at room temperature ($k_B T = 0.025$ eV); (ii) the brightest exciton peak appears at 1.2 eV, in excellent agreement with experimental optical absorption spectra. (iii) We map the low-energy Frenkel exciton system onto a Hubbard model with spin-1 particles on a triangular lattice, resulting in frustrated spin configurations due to antiferromagnetic spin-spin exchange interaction. (iv) As the spin-triplet Frenkel excitons have electric dipoles that interact with each other via electric dipole-dipole interaction, we obtain antiferroelectric ordering, possibly stable at room temperature. Thus, we propose that Nb$_3$Cl$_8$ is a multiferroic dark spin-triplet excitonic Mott insulator.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.13456
- Bibcode:
- 2024arXiv241213456K
- Keywords:
-
- Condensed Matter - Materials Science
- E-Print:
- 9 pages, 5 figures