Redshift tomography of the kinematic matter dipole
Abstract
The dipole anisotropy induced by our peculiar motion in the sky distribution of cosmologically distant sources is an important consistency test of the standard FLRW cosmology. In this work, we formalize how to compute the kinematic matter dipole in redshift bins. Apart from the usual terms arising from angular aberration and flux boosting, there is a contribution from the boosting of the redshifts that becomes important when considering a sample selected on observed redshift, leading to non-vanishing correction terms. We discuss examples and provide expressions to incorporate arbitrary redshift selection functions. We also discuss the effect of redshift measurement uncertainties in this context, in particular in upcoming surveys for which we provide estimates of the correction terms. Depending on the shape of a sample's redshift distribution and on the applied redshift cuts, the correction terms can become substantial, even to the degree that the direction of the dipole is reversed. Lastly, we discuss how cuts on variables correlated with observed redshift, such as color, can induce additional correction terms.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.13162
- Bibcode:
- 2024arXiv241213162V
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 18 pages, 8 figures, including appendix. Comments welcome!