Koopman Mode-Based Detection of Internal Short Circuits in Lithium-ion Battery Pack
Abstract
Monitoring of internal short circuit (ISC) in Lithium-ion battery packs is imperative to safe operations, optimal performance, and extension of pack life. Since ISC in one of the modules inside a battery pack can eventually lead to thermal runaway, it is crucial to detect its early onset. However, the inaccuracy and aging variability of battery models and the unavailability of adequate ISC datasets pose several challenges for both model-based and data-driven approaches. Thus, in this paper, we proposed a model-free Koopman Mode-based module-level ISC detection algorithm for battery packs. The algorithm adopts two parallel Koopman mode generation schemes with the Arnoldi algorithm to capture the Kullback-Leibler divergence-based distributional deviations in Koopman mode statistics in the presence of ISC. Our proposed algorithm utilizes module-level voltage measurements to accurately identify the shorted battery module of the pack without using specific battery models or pre-training with historical battery data. Furthermore, we presented two case studies on shorted battery module detection under both resting and charging conditions. The simulation results illustrated the sensitivity of the proposed algorithm toward ISC and the robustness against measurement noise.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- arXiv:
- arXiv:2412.13115
- Bibcode:
- 2024arXiv241213115G
- Keywords:
-
- Electrical Engineering and Systems Science - Systems and Control