A partial proof of the Brouwer's conjecture
Abstract
Let $G$ be a simple graph with $n$ vertices and $m$ edges and let $k$ be a natural number such that $k\leq n.$ Brouwer conjectured that the sum of the $k$ largest Laplacian eigenvalues of $G$ is at most $m+{k+1 \choose 2}.$ In this paper we prove that this conjecture is true for simple $(m,n)$-graphs where $n\leq m\leq \frac{\sqrt{3}-1}{4}(n-1)n$ and $k\in \left[ \sqrt[3]{\frac{8m^{2}}{n-1}+4mn+n^{2}}, n\right].$ Moreover, we prove that the conjecture is true for all simple $(m,n)$-graphs where $k (\leq n)$ is a natural number from the interval $\left[\sqrt{2n-2m+2\sqrt{2m^{2}+mn(n-1)}},1+\frac{8m^{2}}{n^{2}(n-1)}+\frac{4m}{n}\right].$
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.12952
- Bibcode:
- 2024arXiv241212952F
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Spectral Theory;
- 05C50