MINDS. JWST-MIRI reveals a peculiar CO$_2$-rich chemistry in the drift-dominated disk CX Tau
Abstract
Radial drift of icy pebbles can have a large impact on the chemistry of the inner regions of protoplanetary disks. Compact dust disks ($\lesssim$50 au) are suggested to have a higher (cold) H$_2$O flux than more extended disks, likely due to efficient radial drift bringing H$_2$O-rich material to the inner disk, where it can be observed with JWST. We present JWST MIRI/MRS observations of the disk CX Tau taken as a part of the Mid-INfrared Disk Survey (MINDS) GTO program, a prime example of a drift-dominated disk. This compact disk seems peculiar: the source possesses a bright CO$_2$ feature instead of the bright H$_2$O expected based on its efficient radial drift. We aim to provide an explanation for this finding. We detect molecular emission from H$_2$O, $^{12}$CO$_2$, $^{13}$CO$_2$, C$_2$H$_2$, HCN, and OH in this disk, and even demonstrate a potential detection of CO$^{18}$O. Analysis of the $^{12}$CO$_2$ and $^{13}$CO$_2$ emission shows the former to be tracing a temperature of $\sim$450 K, whereas the $^{13}$CO$_2$ traces a significantly colder temperature ($\sim$200 K). H$_2$O is also securely detected both at shorter and longer wavelengths, tracing a similar temperature of $\sim$500-600 K as the CO$_2$ emission. We also find evidence for a colder, $\sim$200 K H$_2$O component at longer wavelengths, which is in line with this disk having strong radial drift. The cold $^{13}$CO$_2$ and H$_2$O emission indicate that radial drift of ices likely plays an important role in setting the chemistry of the inner disk of CX Tau. Potentially, the H$_2$O-rich gas has already advected onto the central star, which is now followed by an enhancement of comparatively CO$_2$-rich gas reaching the inner disk, explaining the enhancement of CO$_2$ emission in CX Tau. The comparatively weaker H$_2$O emission can be explained by the source's low accretion luminosity. (abridged)
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.12715
- Bibcode:
- 2024arXiv241212715V
- Keywords:
-
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 23 pages, 17 figures, accepted for publication in Astronomy &