Global SLAM in Visual-Inertial Systems with 5G Time-of-Arrival Integration
Abstract
This paper presents a novel approach to improve global localization and mapping in indoor drone navigation by integrating 5G Time of Arrival (ToA) measurements into ORB-SLAM3, a Simultaneous Localization and Mapping (SLAM) system. By incorporating ToA data from 5G base stations, we align the SLAM's local reference frame with a global coordinate system, enabling accurate and consistent global localization. We extend ORB-SLAM3's optimization pipeline to integrate ToA measurements alongside bias estimation, transforming the inherently local estimation into a globally consistent one. This integration effectively resolves scale ambiguity in monocular SLAM systems and enhances robustness, particularly in challenging scenarios where standard SLAM may fail. Our method is evaluated using five real-world indoor datasets collected with RGB-D cameras and inertial measurement units (IMUs), augmented with simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. We tested four SLAM configurations: RGB-D, RGB-D-Inertial, Monocular, and Monocular-Inertial. The results demonstrate that while local estimation accuracy remains comparable due to the high precision of RGB-D-based ORB-SLAM3 compared to ToA measurements, the inclusion of ToA measurements facilitates robust global positioning. In scenarios where standard mono-inertial ORB-SLAM3 loses tracking, our approach maintains accurate localization throughout the trajectory.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.12406
- Bibcode:
- 2024arXiv241212406K
- Keywords:
-
- Computer Science - Robotics