Relaxation methods for pessimistic bilevel optimization
Abstract
We consider a smooth pessimistic bilevel optimization problem, where the lower-level problem is convex and satisfies the Slater constraint qualification. These assumptions ensure that the Karush-Kuhn-Tucker (KKT) reformulation of our problem is well-defined. We then introduce and study the (i) Scholtes, (ii) Lin and Fukushima, (iii) Kadrani, Dussault and Benchakroun, (iv) Steffensen and Ulbrich, and (v) Kanzow and Schwartz relaxation methods for the KKT reformulation of our pessimistic bilevel program. These relaxations have been extensively studied and compared for mathematical programs with complementatrity constraints (MPCCs). To the best of our knowledge, such a study has not been conducted for the pessimistic bilevel optimization problem, which is completely different from an MPCC, as the complemetatrity conditions are part of the objective function, and not in the feasible set of the problem. After introducing these relaxations, we provide convergence results for global and local optimal solutions, as well as suitable versions of the C- and M-stationarity points of our pessimistic bilevel optimization problem. Numerical results are also provided to illustrate the practical implementation of these relaxation algorithms, as well as some preliminary comparisons.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.11416
- Bibcode:
- 2024arXiv241211416B
- Keywords:
-
- Mathematics - Optimization and Control
- E-Print:
- 24 pages, 4 figures, 2 tables